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ON MODELS OF BIOLOGICAL CONTINUOUS MEDIA*'**' 

S.A. REGIFER 

The degree of studyofbiological objects within the frameworkof the CoatinUUm ap- 
proach is characterized in comparison with practical demands. Features of the con- 

struction of models of biological continuous media are discussed, in particular, the 

role of thermodynamicandbiological considerations. Certain timely research direc- 

tions are considered. 

1. Objects of investigation. Continuum representations (not necessarily formalized) 

are used for different biological objects, from subcellular formations (membranes, cytoplasmas) 

to ecological systems. Tissues consisting of cells and extracellular substances and sets of 

organisms, uni- and multicellular, lie between these limit cases on the averaging scales. 

Rheological properties, expressible at least by effective viscosity and elasticity coef- 

ficients, are measured for many thousands of objects. A tissue or fluid not subjectedtosuch 

investigation can hardly be found in the human body, for instance. Chemical,diffusion,electro- 

magnetic, and thermal properties with which modern mechanics deals /I/, havealsobeenstudied 

experimentally for sets of biological objects which are especially distinctive by the close 

connection between phenomena of different physical nature. The number of literature sources 

containing appropriate information expressed in the language of continuum representations or 

useful for their development is in the tens of thousands. 

Approximately 95% of the publications are devoted to the properties of blood, muscles, 

bones, biological membranes and biopolymer solutions. Hundredsofpapers concern skin, cartilage, 

sinews, vascular walls, lung tissue, articular fluid, mucus, cytoplasm, plant tissue, etc. 

Single papers elucidate the results of investigating tears, lymph, hair, liver tissue, and 

sets of other objects, including the most exotic, for instance, the pedal slimeof Gastropod 

mollusks. 

On the whole, such a distribution correlates with the demands of biology, biophysics, and 

medicine in quantitative respects. But these requirements are not always satisfied:even for 

the objects studied most data of fundamental importance are often lacking. For instance, for 

muscles and a number of other anisotropic tissues, the elasticity coefficients are known only 

in one direction there are no satisfactory data on the architecture of the networks of the 

finest blood vessels penetrating them for many tissues. Not only difficulties in an experi- 

ment are the reason: no less important is the lack of governing theoretical models because it 

is often impossible to compare either the results of different authors or the properties of 

different objects. 

The experimental data scattered in thousands of publications are not, as a rule, system- 
atized and are frequently difficult to discover. Only recently have generalizingpapers de- 

voted to the properties of biological' materials started to appear: the blood /2/, vascular 

walls /3/, bone tissue /4/, biological membranes /5/, and stimulable media /6,7/, articular 
cartilages and synovial fluid /4,0/, etc. (the references here and later reflect primarily 
domestic literature of recent years; further bibliographic information is contained in the 
citations; see /9-ll/, also). 

2. Theoretical approaches to the construction of models. Modelsofbiological 

continuous media are the basis of not only computations (solutions of boundary value problems) 
but also of qualitative reasoning and rational performance of experiments. The independent 
heuristic value of models adduces special importance to the problem of their construction. 
Schemes to construct continuum models are known in mechanics, both founded on the analysis of 
phenomena in microscale, and operating directly with macroparameters /1,9,12-14/. The same 
schemes are used even for the description of biological objects. Here not the formal rigor 
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of the derivation or quantitative accuracy (only the accuracy of specific measurements is mean- 
ingful for live objects because of the individuality and variability of their properties), but 
the physical content of the model and the extraction of ir.trinsica1l.y biological regularities 
are essential. 

2.1. Description at the microlevel. For biological objects, the description of pro- 
cesses at a microlevel with subsequent averaging is often realized successfully: the initial 
test data are ordinarily incomplete and allow too great a freedom in interpretation, but the 
averagingis fraught with exceptional mathematical difficulties. All the possibilities of such 
an approach have not been exhausted, and hence the attraction of the achievements of molecular 
biophysics and the solution of appropriate mechanical problems continue to be of Interest. The 
averaging procedure for multiphase media continues to be the subject of discussion: the attrac- 
tion of new mathematical ideas /14,15/ affords a hope for expansion of the class of modelswith 
explicitly defined correspondence between micro- and macro-variables. 

Among the recent results we cite the research on the contribution of erythrocytes to the 
effective properties of blood. Thus, for erythorocyte aggregates of the "money co1Um.n" type 
entrained by a flow, the probabilities of interaction, combination and exchange, arecalculated 
as a function of the aggregate length, the shear velocity, and the bond strength /16,17/ (see 
Sect. 2.2.). In connection with the problem of describing mass transfer in blood (Sect. 3), 
O.F. Kuznetsova and the author solved the problem about the effective diffusivity of an ery- 
throcyte rotating in a shear flow with chemical reactions taken into account. 

A result of the solution is the formula I =: /,,loey -:-ill,,0 ~: ey, which predicts a change in the 
oxygen flow I through an erythrocyte as compared to the flow I& (the external concentration 
gradient is along the !, axis) in the absence of rotation and chemical bonding of the oxygenby 
hemoglobin HF. Here w is the angular velocity, lo. W1 are functions of the mean 0, concentra- 
tion with respect to the surface, PC :: nzw/Do, (R is the erythrocyte diameter), the ratioofthe 
diffusion coefficients Doz/DHt,, and the ratio of the characteristic diffusion and chemical 
reaction times. The theory agrees qualitatively with experiment, and correctly predicts the 
shear velocity level (- 10Rs) starting with which the fine-scale erythrocyte m(.:'i:>ns notice- 

ably affect the O? transfer in blood /2/. 

2.2. Kinetic equations. Different distribution functions are introduced for media 
of complex composition, including a comprehensive one-particle function f(t,r,r,~~) and its 
integrals with respect to c and ai. Here r and c‘ are the coordinate and velocity, ai are 
parameters, some of which refer to the state of the molecule, and others to the state of the 
macro-particles containing this molecule. Underlying the continuum description is then the 
construction of kinetic equations in the distribution functions. Such an approach was develop- 
ed for sets of live organisms, for instance /18,19/, muscle contracting protein /20,21/, ele- 
ments of excitable media /6/, and erythocyte aggregates in moving blood /22/. Precisely for 
the closure of the aggregation equations can the above-mentioned probability characteristics 
of the interaction of money columns be used. 

The equations of /22/ work allow of extension to the case of capture of the fluid (blood 
plasma) in the aggregate. For instance, for double interactions the function '4 8' ,,. IFi giving 
the number of aggregates with volumes in the interval du and with volumes of pent-up fluid 
in the interval dlZ satisfies the equation 

(2.1) 

Here :: is the rate of fluid capture, K.E.F are the probabilities of the acts of merger, 
exchange, and dissociation, and 2 is the fluid volume attached in one act. T.V. Chasova stud- 

ied certain exact solution of (2.1) equation and its qualitative consequences. 

2.3. Average variahles; internal parameters. Moments of the distribution func- 

tions, including the means <ai>, as well as different correlation characteristics occur as 

macroscopic variables in the averaging. The description of a medium of macroparticles with 

complex configuration evidently requires an expanded set of variables. 
The successive development of the conception of "internal variables" /1,12/ was oneofthe 
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decisive circumstances assuring the possibility of applying mechanics to live objects. Micro- 

strains,microstrainrates, andotherkinematicquantitiesusedtodescribe regular fine-scale mo_ 

tioninavolume elementofthemediumarefromone oftheimportantclasses of internal variables. 

Another class istheparametersreflecting the state ofanelementofthemedium, themean size com- 

position, and temperature of the macroparticle, say. A third class is the quasi-thermodynamic 

parameters describing chaotic fine-scale motion and having the same meaning with respect to 

the macroparticles as have the usual thermodynamic parameters with respect to molecules.Among 

this class is, in particular, the effective temperature of the macroparticle "gas". 

The transport properties that ordinarily reflect the termal motion of molecules or 

Brownian particles, are often complicated in content for biological media since they exist as 

complex forms of thermal motion (for instance, bending vibrations of the cell membrane) and 

chaotic motions of a different nature associated with energy consumption: the wanderings of 

bacteria or people in a crowd, the random motions of blood cells in a shear flow, and during 

settling, opening and closing of the finest blood vessels because of spontaneous contraction 

of the vascular muscles or the random clogging by blood cells, etc. It is intuitively clear 

that quasi-thermodynamic variables can be introduced for the majority of the kinds of chaotic 

motion, but further analogies with ordinary thermodynamics require care. 

2.4. Phenomenological approach, thermodynamics. The phenomenological approach 

tothe construction of models of biological media uses known recipes, for which postulation of 

thegoverningparameters (including the quasi-thermodynamic), giving the internal energy as a 

functionofthese parameters, and indicating the dissipative processes in the media are common. 

Todescribe these latter, nonequilibrium thermodynamics methods are relied upon. Precisely 

thusweremodels of the blood, muscles, etc. constructed. 
The thermodynamics of living systems is a subject far beyond the scope of this paper. It 

is justexpedient to repeat the warning /9,23/ about the illegitimacy of formal transferral of 
the usual thermodynamic representations for simple systems to live objects. In particular, it 

isnecessaryto take into account that the media being studied are multiparametric, the media 

particleshaveinternal dissipative mechanisms, and the media behavior is a complex combination 

of reversible and irreversible phenomena. In a number of cases (see Sect. 2.5, for instance) 
the equations of motion of the medium and the thermodynamic relations including the entropy 

balance equation, are written in terms of different sets of variables and turn out to be in- 

dependent in this sence. 
Unfortunately, examples of the incorrect comprehension of the real possibilitiesandlimits 

of applicability of phenomenological nonequilibrium thermodyn&mics are not infrequent. As a 

rule, the question of internal parameters is not elucidated in reference texts; it is often 

forgotten that the Onsager theory does not yield a complete description of the medium, that 

the set of forces and flows characterizing nonequilibrium processes is not fixed once for all 

time, but depends on the details of the description, and that postulation of Onsager relations 

between arbitrarily selected forces and flows is not competent. Confusion in discussions on 

the linearity of models which is erroneously identified with the linearity of the dissipative 

governing relationships, is not rare, and it is, in turn, sometimes rejected unconditionally, 

sometimes postulated unconditionally. 

2.5. On models of sets of organisms. New concepts must be introduced for the 

continuum description of the motion of sets of organisms; the aim of the motion, the program 

of the motion, etc. /24/. They are defined for one species, but upon satisfaction of a number 
of conditions, have continuum analogies which should be in the governing relations. Such 
analogies were used in the equations of motion of cell colonies, the flow of transport or 
crowds of people /9,18,19,25/. 

The interaction of "particles" in such a continuum is accomplished in addition to the 
exchange of mass, momentum, and energy, also by the exchange of information, and this means 

that equations describing the change in the program of the motion with incoming information 
being taken into account should be formed. 

The mass balance equation (or the number density) of "particles", which is closed by the 
"diffusion law" is principal in models of sets of organisms. The momentum and energy balance 
equations are not usually constructive,i.e., are satisfied identically. As a rule, the con- 
struction of such models is not related to thermodynamic considerations. 

In a sufficiently general case, for sets of organisms in a certain fixed substrate, it is 
possible to set /9,25/ 

aclat = -Vkjk -1. Q, aC,!at := --vh.jnk f qa (2.2) 

jk= - DikViC +$icV;C,-+ j*' t . . . . jdlr=Ez'ilC -xD$Y,C, (2.3) 
R 
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Here c, jk7 Q are the concentrations, flow, and rate of generation of the organismsbeing 
considered, C,, &", Qa are the same quantities for objects of the species a.with ,which these 
organisms interact, i*' is a part of the flow independent of V,c,V,c,. Since entropy produc- 
tion in such a system is not related directly to jkV,C [and is expressed in terms of the 
internal parameters not in (2.3) 1, the signs of Dik, caik are arbitrary and no symmetry of the 
coefficients is observed. Such freedom corresponds to a conceivable modificationofthemotion 
program. Let us say that the tendency of mushrooms to accumuiate in one placeinan "isotropic" 
forest is not inherent so that Dik 1 Dgik,D >O while a random cluster in a homogeneous crowd 
attracts new idlers: D(0. The signs of SaiP are governed by whether the objectsofthespecies 
a are attractive or repulsive; if they are fixed then Each'= O,D,oih = (1 but <,'*+-i). 

2.6, Utilization of biological representations. The actual complexity of live 
objects is so great that some observer data is often inadequate even to establish the topo- 
logical characteristics, for instance, construction of tissue with a network of blood vessels. 
One of the ideas discussed now is to involve data on the development of the object in time or 
in its evolution: it is not excluded that it will turn out to be easier to comprehend the 
principle of the building process than the regularities in the architecture of a finished 
building. Construction of the model of a biological continuous medium relies even on other 
actual information of a biological nature: on the "purpose" of the tissue, the principles of 
the activity of its cells, etc. This is the common tendency for modern biomechanics to turn 
to fundamental biological representations. It is pertinent to add the following hypothetical 
reasoning as well. It is known that variational equations are utilized in constructing the 
models of continuous media /1,12/. On the other hand, assertions, expressed in variational 
form, about the optimality of organisms in a set of definite criteria /26/ occur in the study 
of biological evolution. Hence, it is not excluded that variational equations will successful- 
ly be allotted an additional, "historical" content for biological continua_ 

3. Blood. The question of a model for blood as a continuous medium can be considered 
solved on the whole. The model proposed in /27,28/ under certain naturalassumptions (particul- 
arly about the Stokes nature of the flow around erythrocytes) reduces to the equations /9/ 

In addition to the standard notation, here we use the following: C is the true volume 
concentration of erythrocytes, HJ N are the volume and number concentrations of aggregates 
(including single erythrocytes), g is the rate of capture of the liquid phase in the aggregate, 
G is therateof generation of the aggregates, TF is their fluctuation temperature. The func- 
tions g, G. @,, D, 5, q are hypothetically known from comparison with test, dimensionalandother 
considerations, and require further refinement. 

Equations (3.3) are the moment equations for the distribution functions in the kinetic 

equation, (2.1), say 

C = \(w - W) ‘p dwdW, II = \ wydwdW, N = \ c,du,diV 

A more complete model than (3.1- (3.4) takes account of the fractional composition, the 

rate of rotation 0) and the microstrain rate wij of the aggregates. Additional conservat_ion 
equations and governing relations enter the model, and in addition, (3.2) and (3.4) for T*',I~. 
Q /27/ are modified. This model contains internal parameters of all the classes named in 
Sect. 2. 3, (4) and w'J;.Y and H - C: T,. 

A multivelocity model taking account of the compressibility and different plasma and 

erythrocyte densities was constructed by E.S. Losev to study sound propagation in blood, 

erythrocyte sedimentation /29,30/, etc. Erythrocyte aggregation in a rotation viscosimeter 
and their grouping in an ultrasonic field were also examined on the basis of this model with 
the participation of I.V. Orlova and I.A. Pichugina. In order to interpret the data about the 

apparent viscoelasticity of blood (partially due to thixotropic properties /31/), the investi- 
gated a model with the elastic shape changing of erythrocytes taken into account: this model 
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which contains the microstrain of erythrocytes as internal parameter, differs from that of 

Oldroyd /9/ and goes over into it in the case of a vanishingly small erythrocyte dimension. 

Additions to the model, which are as yet unrealized, and woulddescribethephysicochemical 

transformations intheblood, cell damage, coagulation and thrombus formation in the flow /2/, 

are of interest. Obscurities in questions of the adequacy of the adhesion conditions for the 

blood (for flows in narrow tubes and vessels) and on the role of the electrokinetic phenomena 

accompanying the motion of the blood are conserved. No complete description of the diffusion 

process for oxygen and other substances in the blood is given. 
Oxygen transfer in the blood is ordinarily described by a system of the type 

dC,ldt - ‘i;, (Wr’,C,) - f (C,. Ci). dL’,/dl = / ((‘,. C?i (3.5) 

where CL, ('> are molar concentrations ofoxygen in the plasma and in the erythrocytes (including 

the chemically bonded). The diffusion coefficients />'h are known approximately as functions 

of C,. c, and the kinematic characteristics (see Sect.2.1). Whether this approximation is sat- 

isfactory for quantitative computations is not clear. It is not known whether the description 

of the blood composition in terms of just C,.C2 is adequate in this sense; it is possiblethat 

it is sometimes necessary to consider free and chemically bond oxygen separately, and alsothe 

inhomogeneity of the local concentration within the erythrocytes. Furthermore, it is notknown 

whether diffusion terms should not also be introduced even in the second equation of (3.5) with 

the dependence of the diffusion fluxes on V,C, and r‘,L'> taken into account (eincetheerythro- 

cyte concentration is high and collisions are frequent). 

4. Muscles. The relationship which relates the stress in tissues p'j to strains C,J 
and internal parameters Yl, yz, . . . characterizing the muscleactivity (activatorconcentrations, 

fraction of active cells, etc.) 

P ’ = 6-j (Eh-[, d , y,, yz, . > hi) (4.1) 

is central in continuum models of muscle tissue whose investigations started in /32,33/. 

Here P~J is a certain operator, ii is the affinity of the reaction whereupon energy is 

liberated, b,, 
,& 

is a characteristic of the anisotropy of the muscle. In the stationary states 

and sij do not vanish simultaneously if the Yi exceed a certain threshold and A ZO. Also 

important to the interpretation if the test data is the representation of the heat liberation 

rate in the muscle which is contained in the model: q'= @ (Pi'> Eij: A, Yly Yz. . 1 b(j). 

The relationship (4.1) in /33/ is obtained.inthe form of a first order quasilinear dif- 

ferential equation (in time) with one given control parameter :'I- :'(I) for small strains and 
bij = const. For the smooth muscles of vessels it is apparently reasonable to consider Y=Y (P”, 

&zj) /34/ or Y = Y (pi', Eijv eij), but this latter version is studied only slightly. Fortheheart 

muscle Y(t) is determined by differential equations reflecting the kinetics of calcium exchange 

/35-37/; this model is applied for a broad circle of specific computations. A model of a 

skeleton muscle with twocontrol parameters is proposed in /38/. 
One of the most recent problems is to construct models that would give a joint descrip- 

tion of control signal and constraction propagation for the heart muscle, say, i.e., models of 

excitable media /6,7/ and mechanics of muscles with the influence of the mechanical factors on 

the excitation taken into account. Perfection of the muscle tissue model /9/ requires taking 

account of finite strains, heat and mass exchange with the blood, and the influence of blood 

filling on tissue stiffness, as well as the reverse influence (mechanical and through local 
regulation) of muscle contraction on its blood supply. Precisely here does information about 

the architecture of the vascular channel turn out to be necessary. 

The continuum description of a branching microchannel network as a special phase of a 

multiphase continuum is of interest to the study of muscles and many other tissues, lung, bone, 

etc. The fundamental ideas of such a description, providing for the introduction of a fourth 
continuous coordinate in place of a discrete set of a large number of channel types, are pre- 

sented in /9,39/; a quasi-one-dimensional model of a branching network is studied in /40/. 
Tissue models with vascular and other transport networks contribute to a meaningful interpreta- 

tion of physiological measurement on the whole organ, even in the simplest versions. 
Models of other contracting systems, for instance, cell cilia and flagella, that assure 

mobility because of the direct conversion of chemical into mechanical energy attract a great 
deal of attention among biologists, 
421. 

but are as yet represented by rather rough schemes /21,41, 

5. Bones. 
omena /4,9- 

Fluid motion in the networks of the finest channels and electromagnetic phen- 
11/ play a major role in the life-support of bones. Correspondingly, underlying 

the general models of bones isarepresentationofa two-phase material: a solid porous piezo- 
electric and a filtering fluid with ion conductivity. 
such a medium are the generalized Hooke's, 

Among the governing relationships for 
Darcy and Ohm's laws as well as the polarization 
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equation whose principal terms in the usual notation take the following form after manipula- 
tion /9,43/: 

In particular, there hence follows that in the absence of current (jk =O) an electrical 

field proportional to the strain gradients can exist in the material so that the effective 

coupling of the induction D'with ekl would seem to be nonlocal. It is also seenthatbecause 
of cross effects the actual relation of p'j, Di to the strains and the electrical field B, is 

nonsymmetric. Under isothermal conditions the relaxation processes are due to viscosity of 
the solid phase nijkL, filtration processes, and electrical resistance. The apparent visco- 

elasticity of the bone and the damping of the piezoelectrical signal can be due to all these 
factors. 

The problems of practical medicine, particularly the development of methods of non- 
destructive diagnosis and electrostimulation of the healing of fractures, require both care- 

ful confirmation of existing bone models but also their extension to take account of compres- 

sibility (in connection with problems of high-frequency wave propagation) and reconstruction 
processes (see Sect.b). The question of whether or not piezoelectricaleffects mustbe related 

to microstrains of the solid phase and changes in porosity remains unexplained. 
The problem of a combined description of the strain, filtration, and electrical phenomena 

also occurs in studying articular cartilage. Especially essential for this is the dependence 

of the porosity and permeability on the stress, and visibly, on the ion composition of the 

fluid in the pores /8/. 

6. Adaptation and growth. If tissue is seen as a porous material with porosity ,n 

and strain tensor ihI (governed by solid phase displacements), then changes in ,II.F~,~ in time 
are comprised, in the general case, of "fast" which follow a load change as in ordinary de- 

formable bodies, and "slow" irreversible changes which correspond to accumulation (or dissipa- 

tion) of the solid phase because of chemical reactions with the fluid and filtration. For 
instance, changes in !?I. ~~~ because of bone adaptation to loading or reconstructions condi- 

tions for healing last weeks for man, and growth changes in these quantities years. The 

individual development of a species is accompanied by. cell differentiation processes (for 
multicellulars) and morphogenesis, which are partially characterized by the same variables 
flL, El,! as well as internal parameters reflecting the kind of anisotropy of the tissue,cellular 

composition, etc. 

Adaptation and growth changes in tissues, which are protracted relative to the character- 

istic times of the load change, depend substantially on the mean state of stress. Anumber 

of hypotheses about the nature of such a dependence is known, for instance, the adaptation 

properties of bones are treated as a result of the influence of electrical phenomena on mass 

exchange and the reaction rate, and electrical phenomena, through piezo- and pyroelectrical 

effects, are related directly to the stress. 

Of exceptional interest to theoretical biology is the question of the growth in complex- 

ity of the object shape (morphogenesis), particularly, how changes not predetermined genetic- 

ally (at least, directly), are accomplished. Widespread in the conception of Jissipative 

structures /20,44/ and the formation of a complex shape because of the bucklingofthe simpler 

preceding shape. The instability mechanism is sought in the play of diffusion and nonlinear 

chemical reactions with the participation of hypothetical substances (activators and in- 

hibitors) , produced and absorbed cells, by considering that tissue construction follows the 

distributions of these substances. However, buckling can possibly be elastic in nature in 

the growing material, while dissipative processes determine the new shape. 

If morphogenesis is considered as an irreversible spatially ordered strain, then the 

presence of factors assuring order must be acknowledge. The terminology "biopole", a com- 

promise of parapsychologists, was introduced precisely to denote these factors. Asmentioned 

above, the meaning of concentration fields of certain substances, and more rarely, stress 

fields or fields of electromagnetic nature (9,44/ are ascribed to them. 
The opinion is sometimes expressed that the pathological development of tissue is also 

a kind of instability but too straight a treatment of this assertion results in paradoxes. 

This, an equally likely model, on the whole, for adapting bone tissue /45,46/ predicts that 

the existence of stable stationary states is achieved for absolute numerical agreementbetween 

two independent parameters. By such a theory any real tissue is evidently unstable. Not the 

presence of stable stationary states is apparently important but just a limitation on the 
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rates of specific processes in conformity with regulator and adaptable possibilities of the 

organism. 
Study of the adaptation and growth phenomena generates the formulation of the general 

question about the mechanical development factors and about the rational descriptionofdevelop- 

ing objects on the language of continuum representations. Certain substantial elementsofsuch 

a description were introduced in application to the growth of the spine (*) and in the model 

of bone tissue /43/. Special models of adaptive elastic material are proposed in /45,46/; a 

more general theory basedon thevariational equations of L-1. Sedov is developed in /47/. Let 

us note that the growth rate in /46/ was considered to depend directly on the stress, whilein 

/47/ this dependence was introduced in terms of a completely definite internal parameter; the 

paper /43/ takes account of electrical factos also, in principle. 

All such models are still far from perfect. In particular, whether a strong connection 

between the instantaneous values of the stress and the electrical quantities on the one hand, 

and the rates of growth changes on the other is valud is unclear, i.e. whether taking the dif- 

ference in time scales for these two groups of elements is good. 

7. Membranes. Life-support processes are assured to a considerable extent by the pre- 

senceofbiological membranes bounding the cell and the intercellular structure. The membrane 

properties make possible an ordered transfer of substance, the origination and propagation of 

electrical signals, the mobility and sorting of cells in tissue formation, etc. 

Biological membranes consisting of several molecular layers (the thickness of each is 

:5OA) are, as artificial bilayered membranes, two-dimensional (surface) continua posses- 

sing an abundant set of properties from the mechanics viewpoint. Thus, thermal motion is real- 

ized in a membrane not only in the form of chaotic molecule motion along a layer and infrequ- 

ent transitions from one layer to another. Large-scale molecules in the membrane are in a 

state of two-dimensional Brownian motion. As a rule, the cell dimensions are sufficiently 

large so that their Brownian motion as a whole is negligible, but it is important for the 

finest membrane bubbles (vesicules) within the cell. Thermal fluctuations also appear in 

random flexible membrane deformations. Membranes are nonsymmetric in the sence that the layer 

configuration is dissimilar. This results in complex equilibrium modes of the membranes, in 

the dependence of its diffusion resistance on the transverse flow direction, in a dissimilar 

reaction to chemical agents coming in from different sides, etc. 

A membrane is deformed and changes rheological properties in response to local changes in 

composition and temperature, chemical, electrical, and sometimes, magnetic effects. In turn, 

mass exchange, chemical, thermal, and electrical phenomena are interrelated and dependstrongly 

on mechanical factors. Active transport, i.e., material transfer opposite to the diffusion 

gradient, and membrane motion performed because of the chemical reaction energy, as well as a 

change in membrane permeability and generation of an electrical potential becauseofmechanical 

effects have a special biological importance. 
Until recently, the mechanics of membranes was limited by analogies to the theories of 

thin elastic shells and liquid films; the inadequacy of such an apporach is now evident /5,9, 

48,49/. Further investigations have the aim of, firstly, giving an adequate description of 

kinematics of a membrane as a physically infinitely thin object alloted internal parameters, 

secondly, developing appropriate thermodynamic representations (let us emphasize that even the 

concept of membrane temperature has not been defined sufficiently clearly), thirdly, construct- 

ing governing relations with the observable mechanochemical and electromechanicaleffectstaken 

into account by separating the regularities conmnonto all membranes from the particular inherent 
to specialized membranes. 

Representations of ordinary "three-dimensional" mechanics can be utilized to execute this 
program only partially because a membrane is not a "piece" of some three-dimensional material 
/5,9/. Hence, attempts have been undertaken to formulate conservation laws and governing rela- 

tions directly for an open (in the thermodynamic sence) two-dimensional medium /5,50/. Some- 
times, two-dimensional analogiesbetween liquid crystals and Cosserat media are usedhere. There 

are also models describing trans-membrane mass transfer and certain other processes in membran- 
es separately /6,21/. 

Difficulties in constructing membrane models occur even in selecting the governing para- 

meters which are not trivial even in particular problems about its equilibrium modes /48,49/. 
Possibly a rational approach to this question will be developed by starting from a preliminary 

description of the membrane as a system of interacting material surfaces with comparatively 
simple properties /51/. 

*) Entov, V.M. On the mechanics of scoliosis. Preprint No.117, Institute of Problems of 
Mechanics of the U.S.S.R. Academy of Sciences, 1978. 
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8. Conclusion. The above-mentioned models are used to solve numerous and diverse bio- 
mechanical problems (see /2,5-11,52,53/, for example) and some have already been designated. 
The aims pursued in solving these particular problems are quite diverse, however, the results 
are almost always a confirmation and improvement on the initial model. In a number of cases, 
this was the main purpose of the investigation. In contrast, say, to a viscousgasorelastic 
body, biological objects possess such multivariate properties that almost unlimited possibil- 
ities (and requirements) for refinement, detailing, and extension of the models exist. Hence, 
none has nor will visibly havethestatusofa finally established, unique, and universal model 
in the near future. 

The author is grateful to S.S. Grigorian, G.A. Liubimov, A.K. Tsaturian, and A.A. Shtein 
for useful discussions and critical remarks on many questions touched upon in the paper. The 
author happily remarks that the combined research of E.S. Losev and N.Kh. Shadrina contribut- 
ed greatly to its writing. 
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